Selective inference for additive and linear mixed models
David Rügamer,
Philipp F.M. Baumann and
Sonja Greven
Computational Statistics & Data Analysis, 2022, vol. 167, issue C
Abstract:
After model selection, subsequent inference in statistical models tends to be overconfident if selection is not accounted for. One possible solution to address this problem is selective inference, which constitutes a post-selection inference framework and yields valid inference statements by conditioning on the selection event. Existing work on selective inference is, however, not directly applicable to additive and linear mixed models. A novel extension to recent work on selective inference to the class of additive and linear mixed models is thus presented. The approach can be applied for any type of model selection mechanism that can be expressed as a function of the outcome variable (and potentially of covariates on which the model conditions). Properties of the method are validated in simulation studies and in an application to a data set in monetary economics. The approach is particularly useful in cases of non-standard selection procedures, as present in the motivating application.
Keywords: Post-selection inference; Mixed models; Model selection; Monetary economics (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321001845
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:167:y:2022:i:c:s0167947321001845
DOI: 10.1016/j.csda.2021.107350
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().