A group comparison in fMRI data using a semiparametric model under shape invariance
Arunava Samaddar,
Brooke S. Jackson,
Christopher J. Helms,
Nicole A. Lazar,
Jennifer E. McDowell and
Cheolwoo Park
Computational Statistics & Data Analysis, 2022, vol. 167, issue C
Abstract:
In the analysis of functional magnetic resonance imaging (fMRI) data, a common type of analysis is to compare differences across scanning sessions. A challenge to direct comparisons of this type is the low signal-to-noise ratio in fMRI data. By using the property that brain signals from a task-related experiment may exhibit a similar pattern in regions of interest across participants, a semiparametric approach under shape invariance to quantify and test the differences in sessions and groups is developed. The common function is estimated with local polynomial regression and the shape invariance model parameters are estimated using evolutionary optimization methods. The efficacy of the semi-parametric approach is demonstrated on a study of brain activation changes across two sessions associated with practice-related cognitive control. The objective of the study is to evaluate neural circuitry supporting a cognitive control task, and associated practice-related changes via acquisition of blood oxygenation level dependent (BOLD) signal collected using fMRI. By using the proposed approach, BOLD signals in multiple regions of interest for control participants and participants with schizophrenia are compared as they perform a cognitive control task (known as the antisaccade task) at two sessions, and the effects of task practice in these groups are quantified.
Keywords: Attenuation; Cognitive control; Groupwise difference; Local polynomial smoothing; Schizophrenia; Saccades (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794732100195X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:167:y:2022:i:c:s016794732100195x
DOI: 10.1016/j.csda.2021.107361
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().