EconPapers    
Economics at your fingertips  
 

A group comparison in fMRI data using a semiparametric model under shape invariance

Arunava Samaddar, Brooke S. Jackson, Christopher J. Helms, Nicole A. Lazar, Jennifer E. McDowell and Cheolwoo Park

Computational Statistics & Data Analysis, 2022, vol. 167, issue C

Abstract: In the analysis of functional magnetic resonance imaging (fMRI) data, a common type of analysis is to compare differences across scanning sessions. A challenge to direct comparisons of this type is the low signal-to-noise ratio in fMRI data. By using the property that brain signals from a task-related experiment may exhibit a similar pattern in regions of interest across participants, a semiparametric approach under shape invariance to quantify and test the differences in sessions and groups is developed. The common function is estimated with local polynomial regression and the shape invariance model parameters are estimated using evolutionary optimization methods. The efficacy of the semi-parametric approach is demonstrated on a study of brain activation changes across two sessions associated with practice-related cognitive control. The objective of the study is to evaluate neural circuitry supporting a cognitive control task, and associated practice-related changes via acquisition of blood oxygenation level dependent (BOLD) signal collected using fMRI. By using the proposed approach, BOLD signals in multiple regions of interest for control participants and participants with schizophrenia are compared as they perform a cognitive control task (known as the antisaccade task) at two sessions, and the effects of task practice in these groups are quantified.

Keywords: Attenuation; Cognitive control; Groupwise difference; Local polynomial smoothing; Schizophrenia; Saccades (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794732100195X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:167:y:2022:i:c:s016794732100195x

DOI: 10.1016/j.csda.2021.107361

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:167:y:2022:i:c:s016794732100195x