Oracle-efficient estimation for functional data error distribution with simultaneous confidence band
Jiangyan Wang,
Lijie Gu and
Lijian Yang
Computational Statistics & Data Analysis, 2022, vol. 167, issue C
Abstract:
Kolmogorov-Smirnov (K-S) simultaneous confidence band (SCB) is constructed for the error distribution of dense functional data based on kernel distribution estimator (KDE). The KDE is computed from residuals of B spline trajectories over a smaller number of measurements, whereas the B spline trajectories are computed from the remaining larger set of measurements. Under mild and simple assumptions, it is shown that the KDE is a uniformly oracle-efficient estimator of the error distribution, and the SCB has the same asymptotic properties as the classic K-S SCB based on the infeasible empirical cumulative distribution function (EDF) of unobserved errors. Simulation examples corroborate with the theoretical findings. The proposed method is illustrated by examples of an EEG (Electroencephalogram) data and a stock data.
Keywords: Brownian bridge; Kernel; Kolmogorov distribution; Residual; Spline (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321001973
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:167:y:2022:i:c:s0167947321001973
DOI: 10.1016/j.csda.2021.107363
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().