EconPapers    
Economics at your fingertips  
 

Adaptive quantile computation for Brownian bridge in change-point analysis

Jürgen Franke, Mario Hefter, André Herzwurm, Klaus Ritter and Stefanie Schwaar

Computational Statistics & Data Analysis, 2022, vol. 167, issue C

Abstract: As an example for the fast calculation of distributional parameters of Gaussian processes, a new Monte Carlo algorithm for the computation of quantiles of the supremum norm of weighted Brownian bridges is proposed. As it is known, the corresponding distributions arise asymptotically for weighted CUSUM statistics for change-point detection. The new algorithm employs an adaptive (sequential) time discretization for the trajectories of the Brownian bridge. A simulation study shows that the new algorithm by far outperforms the standard approach, which employs a uniform time discretization.

Keywords: Change-point problem; Weighted CUSUM statistic; Weighted Brownian bridge; Sup-norm quantiles; Monte Carlo algorithm; Adaptive discretization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321002097
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:167:y:2022:i:c:s0167947321002097

DOI: 10.1016/j.csda.2021.107375

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:167:y:2022:i:c:s0167947321002097