The general goodness-of-fit tests for correlated data
Hong Zhang and
Zheyang Wu
Computational Statistics & Data Analysis, 2022, vol. 167, issue C
Abstract:
Analyzing correlated data by goodness-of-fit type tests is a critical statistical problem in many applications. A unified framework is provided through a general family of goodness-of-fit tests (GGOF) to address this problem. The GGOF family covers many classic and newly developed tests, such as the minimal p-value test, Simes test, the GATES, one-sided Kolmogorov-Smirnov type tests, one-sided phi-divergence tests, the generalized Higher Criticism, the generalized Berk-Jones, etc. It is shown that the omnibus test that automatically adapts among GGOF statistics for given data, i.e., the GGOF-O, is still contained in the GGOF family and is computationally efficient. For analytically controlling the type I error rate of any GGOF tests, exact calculation is deduced under the Gaussian model with positive equal correlations. Based on that, the effective correlation coefficient (ECC) algorithm is proposed to address arbitrary correlations. Simulations are used to explore how signal and correlation patterns jointly influence typical GGOF tests' statistical power. The GGOF-O is shown robustly powerful across various signal and correlation patterns. As demonstrated by a study of bone mineral density, the GGOF framework has good potential for detecting novel disease genes in genetic summary data analysis. Computational tools are available in the R package SetTest on the CRAN.
Keywords: Global hypothesis testing; Goodness-of-fit; Correlated data; Data-adaptive test; Genetic association studies (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321002139
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:167:y:2022:i:c:s0167947321002139
DOI: 10.1016/j.csda.2021.107379
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().