Improving performances of MCMC for Nearest Neighbor Gaussian Process models with full data augmentation
Sébastien Coube-Sisqueille and
Benoît Liquet
Computational Statistics & Data Analysis, 2022, vol. 168, issue C
Abstract:
Even though Nearest Neighbor Gaussian Processes (NNGP) alleviate MCMC implementation of Bayesian space-time models considerably, they do not solve the convergence problems caused by high model dimension. Frugal alternatives such as response or collapsed algorithms are one answer. An alternative approach is to keep full data augmentation, but to try and make it more efficient. Two strategies are presented.
Keywords: Nearest Neighbor Gaussian Process; Space-time models; Chromatic sampler; Interweaving (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321002024
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:168:y:2022:i:c:s0167947321002024
DOI: 10.1016/j.csda.2021.107368
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().