EconPapers    
Economics at your fingertips  
 

Improving performances of MCMC for Nearest Neighbor Gaussian Process models with full data augmentation

Sébastien Coube-Sisqueille and Benoît Liquet

Computational Statistics & Data Analysis, 2022, vol. 168, issue C

Abstract: Even though Nearest Neighbor Gaussian Processes (NNGP) alleviate MCMC implementation of Bayesian space-time models considerably, they do not solve the convergence problems caused by high model dimension. Frugal alternatives such as response or collapsed algorithms are one answer. An alternative approach is to keep full data augmentation, but to try and make it more efficient. Two strategies are presented.

Keywords: Nearest Neighbor Gaussian Process; Space-time models; Chromatic sampler; Interweaving (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321002024
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:168:y:2022:i:c:s0167947321002024

DOI: 10.1016/j.csda.2021.107368

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:168:y:2022:i:c:s0167947321002024