Variational Bayesian inference for network autoregression models
Wei-Ting Lai,
Ray-Bing Chen,
Ying Chen and
Thorsten Koch
Computational Statistics & Data Analysis, 2022, vol. 169, issue C
Abstract:
We develop a variational Bayesian (VB) approach for estimating large-scale dynamic network models in the network autoregression framework. The VB approach allows for the automatic identification of the dynamic structure of such a model and obtains a direct approximation of the posterior density. Compared to the Markov chain Monte Carlo (MCMC)-based sampling approaches, the VB approach achieves enhanced computational efficiency without sacrificing estimation accuracy. In a real data analysis scenario of day-ahead natural gas flow prediction in the German gas transmission network with 51 nodes between October 2013 and September 2015, the VB approach delivers promising forecasting accuracy along with clearly detected structures in terms of dynamic dependence.
Keywords: Dynamic network; EM algorithm; MCMC algorithm; Vector autoregression (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321002401
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:169:y:2022:i:c:s0167947321002401
DOI: 10.1016/j.csda.2021.107406
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().