EconPapers    
Economics at your fingertips  
 

Multiclass-penalized logistic regression

Didier Nibbering and Trevor J. Hastie

Computational Statistics & Data Analysis, 2022, vol. 169, issue C

Abstract: A multinomial logistic regression model that penalizes the number of class-specific parameters is proposed. The number of parameters in a standard multinomial regression model increases linearly with the number of classes and number of explanatory variables. The multiclass-penalized regression model clusters parameters together by penalizing the differences between class-specific parameter vectors, instead of penalizing the number of explanatory variables. The model provides interpretable parameter estimates, even in settings with many classes. An algorithm for maximum likelihood estimation in the multiclass-penalized regression model is discussed. Applications to simulated and real data show in- and out-of-sample improvements in performance relative to a standard multinomial regression model.

Keywords: Multinomial logistic regression; Lasso; Parameter clustering (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321002486
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:169:y:2022:i:c:s0167947321002486

DOI: 10.1016/j.csda.2021.107414

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:169:y:2022:i:c:s0167947321002486