EconPapers    
Economics at your fingertips  
 

Approximate Bayesian conditional copulas

Clara Grazian, Luciana Dalla Valle and Brunero Liseo

Computational Statistics & Data Analysis, 2022, vol. 169, issue C

Abstract: Copula models are flexible tools to represent complex structures of dependence for multivariate random variables. According to Sklar's theorem, any multidimensional absolutely continuous distribution function can be uniquely represented as a copula, i.e. a joint cumulative distribution function on the unit hypercube with uniform marginals, which captures the dependence structure among the vector components. In real data applications, the interest of the analyses often lies on specific functionals of the dependence, which quantify aspects of it in a few numerical values. A broad literature exists on such functionals, however extensions to include covariates are still limited. This is mainly due to the lack of unbiased estimators of the conditional copula, especially when one does not have enough information to select the copula model. Several Bayesian methods to approximate the posterior distribution of functionals of the dependence varying according covariates are presented and compared; the main advantage of the investigated methods is that they use nonparametric models, avoiding the selection of the copula, which is usually a delicate aspect of copula modelling. These methods are compared in simulation studies and in two realistic applications, from civil engineering and astrophysics.

Keywords: Approximate Bayesian computation; Bayesian inference; Dependence modelling; Gaussian processes; Empirical likelihood; Splines (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321002516
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:169:y:2022:i:c:s0167947321002516

DOI: 10.1016/j.csda.2021.107417

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:169:y:2022:i:c:s0167947321002516