Statistical inference for high-dimensional pathway analysis with multiple responses
Yang Liu,
Wei Sun,
Li Hsu and
Qianchuan He
Computational Statistics & Data Analysis, 2022, vol. 169, issue C
Abstract:
Pathway analysis, i.e., grouping analysis, has important applications in genomic studies. Existing pathway analysis approaches are mostly focused on a single response and are not suitable for analyzing complex diseases that are often related with multiple response variables. Although a handful of approaches have been developed for multiple responses, these methods are mainly designed for pathways with a moderate number of features. A multi-response pathway analysis approach that is able to conduct statistical inference when the dimension is potentially higher than sample size is introduced. Asymptotical properties of the test statistic are established and theoretical investigation of the statistical power is conducted. Simulation studies and real data analysis show that the proposed approach performs well in identifying important pathways that influence multiple expression quantitative trait loci (eQTL).
Keywords: Asymptotical distribution; Complex diseases; High dimensional inference; Multivariate responses; Pathway analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947321002528
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:169:y:2022:i:c:s0167947321002528
DOI: 10.1016/j.csda.2021.107418
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().