Truncated estimation in functional generalized linear regression models
Xi Liu,
Afshin A. Divani and
Alexander Petersen
Computational Statistics & Data Analysis, 2022, vol. 169, issue C
Abstract:
Functional generalized linear models investigate the effect of functional predictors on a scalar response. An interesting case is when the functional predictor is thought to exert an influence on the conditional mean of the response only through its values up to a certain point in the domain. In the literature, models with this type of restriction on the functional effect have been termed truncated or historical regression models. A penalized likelihood estimator is formulated by combining a structured variable selection method with a localized B-spline expansion of the regression coefficient function. In addition to a smoothing penalty that is typical for functional regression, a nested group lasso penalty is also included which guarantees the sequential entering of B-splines and thus induces the desired truncation on the estimator. An optimization scheme is developed to compute the solution path efficiently when varying the truncation tuning parameter. The convergence rate of the coefficient function estimator and consistency of the truncation point estimator are given under suitable smoothness assumptions. The proposed method is demonstrated through simulations and an application involving the effects of blood pressure values in patients who suffered a spontaneous intracerebral hemorrhage.
Keywords: Functional data analysis; Functional generalized linear models; Penalized B-splines; Nested group lasso (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947322000019
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:169:y:2022:i:c:s0167947322000019
DOI: 10.1016/j.csda.2022.107421
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().