An efficient algorithm to assess multivariate surrogate endpoints in a causal inference framework
Alvaro J. Flórez,
Geert Molenberghs,
Wim Van der Elst and
Ariel Alonso Abad
Computational Statistics & Data Analysis, 2022, vol. 172, issue C
Abstract:
Multivariate surrogate endpoints can improve the efficiency of the drug development process, but their evaluation raises many challenges. Recently, the so-called individual causal association (ICA) has been introduced for validation purposes in the causal-inference paradigm. The ICA is a function of a partially identifiable correlation matrix (R) and, hence, it cannot be estimated without making untestable assumptions. This issue has been addressed via a simulation-based analysis. Essentially, the ICA is assessed across a set of values for the non-identifiable entries in R that lead to a valid correlation matrix and this has been implemented using a fast algorithm based on partial correlations (PC). Using theoretical arguments and simulations, it is shown that, in spite of its computational efficiency, the PC algorithm may lead to the spurious effect that adding non-informative surrogates, i.e., surrogates that convey no information on the treatment effect on the true endpoint, seemingly reduces the ICA range. To address this, a modified PC algorithm (MPC) is proposed. Based on simulations, it is shown that the MPC algorithm removes this nuisance effect and increases computational efficiency.
Keywords: Causal inference; Matrix completion problem; Multiple surrogate evaluation; Random correlation matrix; Partial correlation; Sensitivity analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947322000743
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:172:y:2022:i:c:s0167947322000743
DOI: 10.1016/j.csda.2022.107494
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().