Variable screening for varying coefficient models with ultrahigh-dimensional survival data
Lianqiang Qu,
Xiaoyu Wang and
Liuquan Sun
Computational Statistics & Data Analysis, 2022, vol. 172, issue C
Abstract:
In this article, we develop a variable screening method for varying coefficient hazards models of single-index form. The proposed method can be viewed as a natural survival extension of conditional correlation screening. An appealing feature of the proposed method is that it is applicable to many popularly used survival models, including the varying coefficient additive hazards model and the varying coefficient Cox model. The proposed method enjoys the sure screening property, and the number of the selected covariates can be bounded by a moderate order. Simulation studies demonstrate that our method performs well, and an empirical example is also presented.
Keywords: Kernel smoothing; Survival data; Ultrahigh dimensionality; Variable screening; Varying coefficient (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947322000780
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:172:y:2022:i:c:s0167947322000780
DOI: 10.1016/j.csda.2022.107498
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().