EconPapers    
Economics at your fingertips  
 

Marginal M-quantile regression for multivariate dependent data

Luca Merlo, Lea Petrella, Nicola Salvati and Nikos Tzavidis

Computational Statistics & Data Analysis, 2022, vol. 173, issue C

Abstract: An M-quantile regression model is developed for the analysis of multiple dependent outcomes by introducing the notion of directional M-quantiles for multivariate responses. In order to incorporate the correlation structure of the data into the estimation framework, a robust marginal M-quantile model is proposed extending the well-known generalized estimating equations approach to the case of regression M-quantiles with Huber's loss function. The estimation of the model and the asymptotic properties of estimators are discussed. In addition, the idea of M-quantile contours is introduced to describe the dependence between the response variables and to investigate the effect of covariates on the location, spread and shape of the distribution of the responses. To examine their variability, confidence envelopes via nonparametric bootstrap are constructed. The validity of the proposed methodology is explored both by means of simulation studies and through an application to educational data.

Keywords: Asymptotic properties; Correlated data; Directional M-quantile; Generalized M-quantile estimating equations; M-quantile contour (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947322000809
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:173:y:2022:i:c:s0167947322000809

DOI: 10.1016/j.csda.2022.107500

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:173:y:2022:i:c:s0167947322000809