A roughness penalty approach to estimate densities over two-dimensional manifolds
Eleonora Arnone,
Federico Ferraccioli,
Clara Pigolotti and
Laura M. Sangalli
Computational Statistics & Data Analysis, 2022, vol. 174, issue C
Abstract:
An innovative nonparametric method for density estimation over general two-dimensional Riemannian manifolds is proposed. The method follows a functional data analysis approach, combining maximum likelihood estimation with a roughness penalty that involves a differential operator appropriately defined over the manifold domain, thus controlling the smoothness of the estimate. The proposed method can accurately handle point pattern data over complicated curved domains. Moreover, it is able to capture complex multimodal signals, with strongly localized and highly skewed modes, with varying directions and intensity of anisotropy. The estimation procedure exploits a discretization in finite element bases, enabling great flexibility on the spatial domain. The method is tested through simulation studies, showing the strengths of the proposed approach. Finally, the density estimation method is illustrated with an application to the distribution of earthquakes in the world.
Keywords: Functional data analysis; Differential regularization; Finite element basis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947322001074
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:174:y:2022:i:c:s0167947322001074
DOI: 10.1016/j.csda.2022.107527
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().