A high dimensional dissimilarity measure
Reza Modarres
Computational Statistics & Data Analysis, 2022, vol. 175, issue C
Abstract:
A new dissimilarity measure for high-dimensional, low sample size settings to compare high dimensional probability distributions is proposed. The asymptotic behavior of the new dissimilarity index is studied theoretically. Numerical experiments from high dimensional distributions exhibit the usefulness of the method. The eigenvalues of the matrix of dissimilarities for comparing two high dimensional samples are determined and shown to be related to the asymptotic value of the dissimilarity index. A dissimilarity visualization plot that is useful for detection of outliers and change points is proposed and utilized to find the change points in S&P500 stock return data.
Keywords: Interpoint distance; Outlier; Change point; HDLSS (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947322001402
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:175:y:2022:i:c:s0167947322001402
DOI: 10.1016/j.csda.2022.107560
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().