EconPapers    
Economics at your fingertips  
 

Nonparametric Bayesian modelling of longitudinally integrated covariance functions on spheres

Pier Giovanni Bissiri, Galatia Cleanthous, Xavier Emery, Bernardo Nipoti and Emilio Porcu

Computational Statistics & Data Analysis, 2022, vol. 176, issue C

Abstract: Taking into account axial symmetry in the covariance function of a Gaussian random field is essential when the purpose is modelling data defined over a large portion of the sphere representing our planet. Axially symmetric covariance functions admit a convoluted spectral representation that makes modelling and inference difficult. This motivates the interest in devising alternative strategies to attain axial symmetry, an appealing option being longitudinal integration of isotropic random fields on the sphere. This paper provides a comprehensive theoretical framework to model longitudinal integration on spheres through a nonparametric Bayesian approach. Longitudinally integrated covariances are treated as random objects, where the randomness is implied by the randomised spectrum associated with the covariance function. After investigating the topological support induced by our construction, we give the posterior distribution a thorough inspection. A Bayesian nonparametric model for the analysis of data defined on the sphere is described and implemented, its performance investigated by means of the analysis of both simulated and real data sets.

Keywords: Axial symmetry; Bayesian nonparametrics; Covariance functions; Global processes; Longitudinal integration; Data on spheres (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947322001359
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:176:y:2022:i:c:s0167947322001359

DOI: 10.1016/j.csda.2022.107555

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:176:y:2022:i:c:s0167947322001359