Smooth LASSO estimator for the Function-on-Function linear regression model
Fabio Centofanti,
Matteo Fontana,
Antonio Lepore and
Simone Vantini
Computational Statistics & Data Analysis, 2022, vol. 176, issue C
Abstract:
A new estimator, named S-LASSO, is proposed for the coefficient function of the Function-on-Function linear regression model. The S-LASSO estimator is shown to be able to increase the interpretability of the model, by better locating regions where the coefficient function is zero, and to smoothly estimate non-zero values of the coefficient function. The sparsity of the estimator is ensured by a functional LASSO penalty, which pointwise shrinks toward zero the coefficient function, while the smoothness is provided by two roughness penalties that penalize the curvature of the final estimator. The resulting estimator is proved to be estimation and pointwise sign consistent. Via an extensive Monte Carlo simulation study, the estimation and predictive performance of the S-LASSO estimator are shown to be better than (or at worst comparable with) competing estimators already presented in the literature before. Practical advantages of the S-LASSO estimator are illustrated through the analysis of the Canadian weather, Swedish mortality and ship CO2emission data. The S-LASSO method is implemented in the R package slasso, openly available online on CRAN.
Keywords: B-splines; Functional data analysis; Functional regression; LASSO; Roughness penalties (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947322001360
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:176:y:2022:i:c:s0167947322001360
DOI: 10.1016/j.csda.2022.107556
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().