EconPapers    
Economics at your fingertips  
 

Variable screening based on Gaussian Centered L-moments

Hyowon An, Kai Zhang, Hannu Oja and J.S. Marron

Computational Statistics & Data Analysis, 2023, vol. 179, issue C

Abstract: An important challenge in big data is identification of important variables. For this purpose, methods of discovering variables with non-standard univariate marginal distributions are proposed. The conventional moments based summary statistics can be well-adopted, but their sensitivity to outliers can lead to selection based on a few outliers rather than distributional shape such as bimodality. To address this type of non-robustness, the L-moments are considered. Using these in practice, however, has a limitation since they do not take zero values at the Gaussian distributions to which the shape of a marginal distribution is most naturally compared. As a remedy, Gaussian Centered L-moments are proposed, which share advantages of the L-moments, but have zeros at the Gaussian distributions. The strength of Gaussian Centered L-moments over other conventional moments is shown in theoretical and practical aspects such as their performances in screening important genes in cancer genetics data.

Keywords: Robust statistics; L-moments; L-statistics; Skewness; Kurtosis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947322002122
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:179:y:2023:i:c:s0167947322002122

DOI: 10.1016/j.csda.2022.107632

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:179:y:2023:i:c:s0167947322002122