Nonparametric inference on smoothed quantile regression process
Meiling Hao,
Yuanyuan Lin,
Guohao Shen and
Wen Su
Computational Statistics & Data Analysis, 2023, vol. 179, issue C
Abstract:
This paper studies the global estimation in semiparametric quantile regression models. For estimating unknown functional parameters, an integrated quantile regression loss function with penalization is proposed. The first step is to obtain a vector-valued functional Bahadur representation of the resulting estimators, and then derive the asymptotic distribution of the proposed infinite-dimensional estimators. Furthermore, a resampling approach that generalizes the minimand perturbing technique is adopted to construct confidence intervals and to conduct hypothesis testing. Extensive simulation studies demonstrate the effectiveness of the proposed method, and applications to the real estate dataset and world happiness report data are provided.
Keywords: Asymptotic normality; Bahadur representation; Quantile regression process (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947322002250
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:179:y:2023:i:c:s0167947322002250
DOI: 10.1016/j.csda.2022.107645
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().