EconPapers    
Economics at your fingertips  
 

Bayesian analysis of longitudinal data via empirical likelihood

Jiangrong Ouyang and Howard Bondell

Computational Statistics & Data Analysis, 2023, vol. 187, issue C

Abstract: Longitudinal data consists of repeated observations that are typically correlated, which makes the likelihood-based inference challenging. This limits the use of Bayesian methods for longitudinal data in many general situations. To address this issue, empirical likelihood is used to develop a fully Bayesian method for analyzing longitudinal data based on a set of moment equations parallel to the form of generalized estimating equations. It is demonstrated in the context of two popular priors for Bayesian inference and regularization, the Laplace prior and the horseshoe prior. The proposed Bayesian shrinkage method performs well in both estimation accuracy and variable selection, while also providing a full quantification of uncertainty. The method is illustrated using a yeast cell-cycle microarray time course gene expression data set.

Keywords: Empirical likelihood; Generalized estimating equation; Horseshoe prior; Longitudinal data; Shrinkage; Variable selection (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947323000968
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:187:y:2023:i:c:s0167947323000968

DOI: 10.1016/j.csda.2023.107785

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:187:y:2023:i:c:s0167947323000968