The tenets of quantile-based inference in Bayesian models
Dmytro Perepolkin,
Benjamin Goodrich and
Ullrika Sahlin
Computational Statistics & Data Analysis, 2023, vol. 187, issue C
Abstract:
Bayesian inference can be extended to probability distributions defined in terms of their inverse distribution function, i.e. their quantile function. This applies to both prior and likelihood. Quantile-based likelihood is useful in models with sampling distributions which lack an explicit probability density function. Quantile-based prior allows for flexible distributions to express expert knowledge. The principle of quantile-based Bayesian inference is demonstrated in the univariate setting with a Govindarajulu likelihood, as well as in a parametric quantile regression, where the error term is described by a quantile function of a Flattened Skew-Logistic distribution.
Keywords: Bayesian analysis; Quantile functions; Quantile-based inference; Parametric quantile regression (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947323001068
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:187:y:2023:i:c:s0167947323001068
DOI: 10.1016/j.csda.2023.107795
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().