Online regularized matrix regression with streaming data
Yaohong Yang,
Weihua Zhao and
Lei Wang
Computational Statistics & Data Analysis, 2023, vol. 187, issue C
Abstract:
As extensions of vector data with ultrahigh dimensionality and complex structures, matrix data are fast emerging in a large variety of scientific applications. In this paper, we consider the matrix regression with streaming data and propose two-stage online regularized estimators with nuclear norm (NN) and adaptive nuclear norm (ANN) penalties, respectively. In the first stage, an equivalent form of offline matrix regression loss function using current raw data and summary statistics from historical data is established. In the second stage, gradient descent algorithm and soft thresholding methods are implemented iteratively to obtain the proposed online NN and ANN estimators. We establish the asymptotic properties of the resulting online regularized estimators and show the rank selection consistency for the online ANN estimator. The finite-sample performance of the proposed estimators is studied through simulations and an application to Beijing Air Quality data set.
Keywords: Online update; Nuclear norm; Adaptive nuclear norm; Matrix regression; Low-rank (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947323001202
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:187:y:2023:i:c:s0167947323001202
DOI: 10.1016/j.csda.2023.107809
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().