Multiclass Laplacian support vector machine with functional analysis of variance decomposition
Beomjin Park and
Changyi Park
Computational Statistics & Data Analysis, 2023, vol. 187, issue C
Abstract:
In classification problems, acquiring a sufficient amount of labeled samples sometimes proves expensive and time-consuming, while unlabeled samples are relatively easier to obtain. The Laplacian Support Vector Machine (LapSVM) is one of the successful methods that learn better classification functions by incorporating unlabeled samples. However, since LapSVM was originally designed for binary classification, it can not be applied directly to multiclass classification problems commonly encountered in practice. Thus we derive an extension of LapSVM to multiclass classification problems using an appropriate multiclass formulation. Another problem with LapSVM is that irrelevant variables easily degrade classification performance. The irrelevant variables can increase the variance of predicted values and make the model difficult to interpret. Therefore, this paper also proposes the multiclass LapSVM with functional analysis of variance decomposition to identify relevant variables. Through comprehensive simulations and real-world datasets, we demonstrate the efficiency and improved classification performance of the proposed methods.
Keywords: Laplacian support vector machine; Multiclass classification; Semi-supervised learning; Variable selection (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947323001251
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:187:y:2023:i:c:s0167947323001251
DOI: 10.1016/j.csda.2023.107814
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().