EconPapers    
Economics at your fingertips  
 

Full uncertainty analysis for Bayesian nonparametric mixture models

Blake Moya and Stephen G. Walker

Computational Statistics & Data Analysis, 2024, vol. 189, issue C

Abstract: A full posterior analysis for nonparametric mixture models using Gibbs-type prior distributions is presented. This includes the well known Dirichlet process mixture (DPM) model. The random mixing distribution is removed enabling a simple-to-implement Markov chain Monte Carlo (MCMC) algorithm. The removal procedure takes away some of the posterior uncertainty and how it is replaced forms a novel aspect to the work. The removal, MCMC algorithm and replacement of the uncertainty only require the probabilities of a new or an old value associated with the corresponding Gibbs-type exchangeable sequence. Consequently, no explicit representations of the prior or posterior are required and instead only knowledge of the exchangeable sequence is needed. This allows the implementation of mixture models with full posterior uncertainty, not previously possible, including one introduced by Gnedin. Numerous illustrations are presented, as is an R-package called CopRe which implements the methodology, and other supplemental material.

Keywords: Exchangeability; Gibbs-type model; Mixture model (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947323001494
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:189:y:2024:i:c:s0167947323001494

DOI: 10.1016/j.csda.2023.107838

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:189:y:2024:i:c:s0167947323001494