Standard error estimates in hierarchical generalized linear models
Shaobo Jin and
Youngjo Lee
Computational Statistics & Data Analysis, 2024, vol. 189, issue C
Abstract:
Hierarchical generalized linear models are often used to fit random effects models. However, attention is mostly paid to the estimation of fixed unknown parameters and inference for latent random effects. In contrast, standard error estimators receive less attention than they should be. Currently, the standard error estimators are based on various approximations, even when the mean parameters may be estimated from a higher-order approximation of the likelihood and the dispersion parameters are estimated by restricted maximum likelihood. Existing standard error estimation procedures are reviewed. A numerical illustration shows that the current standard errors are not necessarily accurate. Alternative standard errors are also proposed. In particular, a sandwich estimator that accounts for the dependence between the mean parameters and the dispersion parameters greatly improve the current standard errors.
Keywords: Laplace approximation; REML; h-likelihood; Sandwich estimator (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947323001639
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:189:y:2024:i:c:s0167947323001639
DOI: 10.1016/j.csda.2023.107852
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().