EconPapers    
Economics at your fingertips  
 

Hybrid exact-approximate design approach for sparse functional data

Ming-Hung Kao and Ping-Han Huang

Computational Statistics & Data Analysis, 2024, vol. 190, issue C

Abstract: Optimal designs for sparse functional data under the functional empirical component (FEC) settings are studied. This design issue has some unique features, making it different from classical design problems. To efficiently obtain optimal exact and approximate designs, new computational methods and useful theoretical results are developed, and a hybrid exact-approximate design approach is proposed. The proposed methods are demonstrated to be efficient via simulation studies and a real example.

Keywords: Design efficiency; Longitudinal data; Mixed model equations; Principal components; Random effects (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947323001615
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:190:y:2024:i:c:s0167947323001615

DOI: 10.1016/j.csda.2023.107850

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:190:y:2024:i:c:s0167947323001615