EconPapers    
Economics at your fingertips  
 

Detecting change structures of nonparametric regressions

Wenbiao Zhao and Lixing Zhu

Computational Statistics & Data Analysis, 2024, vol. 190, issue C

Abstract: This research investigates detecting change points of general nonparametric regression functions by introducing a novel criterion. It is based on the moving sums of conditional expectation to avoid both computationally expensive algorithms, exhaustive search methods need, and false positives hypothesis testing-based approaches encounter. This new criterion can simultaneously and consistently, in a certain sense, detect multiple change points and their locations even when, as the sample size goes to infinity, the number of changes grows up to infinity, and some changes tend to zero. Further, because of its visualization nature, in practice, the locations can be relatively more easily identified, by plotting its signal statistic, than existing methods in the literature. Numerical studies are conducted to examine its performance in finite sample scenarios, and a real data example is analyzed for illustration.

Keywords: Double average ratios; MOSUM; Multiple change-point detection; Pulse pattern; Visualization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947323001676
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:190:y:2024:i:c:s0167947323001676

DOI: 10.1016/j.csda.2023.107856

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:190:y:2024:i:c:s0167947323001676