EconPapers    
Economics at your fingertips  
 

Laplace approximated quasi-likelihood method for heteroscedastic survival data

Lili Yu and Yichuan Zhao

Computational Statistics & Data Analysis, 2024, vol. 190, issue C

Abstract: The classical accelerated failure time model is the major linear model for right censored survival data. It requires the survival data to exhibit homoscedasticity of variance and excludes heteroscedastic survival data that are often seen in practical applications. The least squares method for the classical accelerated failure time model has been extended to accommodate the heteroscedasticity in survival data. However, the estimating equations are discrete and hence they are time consuming and may not be feasible for large datasets. This paper proposes a Laplace approximated quasi-likelihood method with a continuous estimating equation. It utilizes the Laplace approximation to approximate the survival function in the quasi-likelihood, in which the variance function is approximated by a spline function. Then it shows the asymptotic distribution of the Laplace approximated estimator, its estimation bias and the formula for confidence interval estimation for the parameter of interest. The finite sample performance of the proposed approach is evaluated through simulation studies and follows real data examples for illustration.

Keywords: Accelerated failure time model; Spline smoothing; Survival analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947323001706
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:190:y:2024:i:c:s0167947323001706

DOI: 10.1016/j.csda.2023.107859

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:190:y:2024:i:c:s0167947323001706