EconPapers    
Economics at your fingertips  
 

HiQR: An efficient algorithm for high-dimensional quadratic regression with penalties

Cheng Wang, Haozhe Chen and Binyan Jiang

Computational Statistics & Data Analysis, 2024, vol. 192, issue C

Abstract: This paper investigates the efficient solution of penalized quadratic regressions in high-dimensional settings. A novel and efficient algorithm for ridge-penalized quadratic regression is proposed, leveraging the matrix structures of the regression with interactions. Additionally, an alternating direction method of multipliers (ADMM) framework is developed for penalized quadratic regression with general penalties, including both single and hybrid penalty functions. The approach simplifies the calculations to basic matrix-based operations, making it appealing in terms of both memory storage and computational complexity for solving penalized quadratic regressions in high-dimensional settings.

Keywords: ADMM; LASSO; Quadratic regression; Ridge regression (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947323002153
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:192:y:2024:i:c:s0167947323002153

DOI: 10.1016/j.csda.2023.107904

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:192:y:2024:i:c:s0167947323002153