HiQR: An efficient algorithm for high-dimensional quadratic regression with penalties
Cheng Wang,
Haozhe Chen and
Binyan Jiang
Computational Statistics & Data Analysis, 2024, vol. 192, issue C
Abstract:
This paper investigates the efficient solution of penalized quadratic regressions in high-dimensional settings. A novel and efficient algorithm for ridge-penalized quadratic regression is proposed, leveraging the matrix structures of the regression with interactions. Additionally, an alternating direction method of multipliers (ADMM) framework is developed for penalized quadratic regression with general penalties, including both single and hybrid penalty functions. The approach simplifies the calculations to basic matrix-based operations, making it appealing in terms of both memory storage and computational complexity for solving penalized quadratic regressions in high-dimensional settings.
Keywords: ADMM; LASSO; Quadratic regression; Ridge regression (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947323002153
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:192:y:2024:i:c:s0167947323002153
DOI: 10.1016/j.csda.2023.107904
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().