EconPapers    
Economics at your fingertips  
 

Graph-based spatial segmentation of areal data

Vivien Goepp and Jan van de Kassteele

Computational Statistics & Data Analysis, 2024, vol. 192, issue C

Abstract: Smoothing is often used to improve the readability and interpretability of noisy areal data. However, there are many instances where the underlying quantity is discontinuous. For such cases, specific methods are needed to estimate the piecewise constant spatial process. A well-known approach in this setting is to perform segmentation of the signal using the adjacency graph, such as the graph-based fused lasso. However, this method does not scale well to large graphs. A new method is introduced for piecewise constant spatial estimation that (i) is faster to compute on large graphs and (ii) yields sparser models than the fused lasso (for the same amount of regularization), resulting in estimates that are easier to interpret. The method is illustrated on simulated data and applied to real data on overweight prevalence in the Netherlands. Healthy and unhealthy zones are identified, which cannot be explained by demographic or socio-economic characteristics alone. The method is found capable of identifying such zones and can assist policymakers with their health improving strategies.

Keywords: Graph signal processing; Areal lattice data; Spatial clustering; Hot spot detection; Graph-based fused lasso; Adaptive ridge (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947323002190
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:192:y:2024:i:c:s0167947323002190

DOI: 10.1016/j.csda.2023.107908

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:192:y:2024:i:c:s0167947323002190