EconPapers    
Economics at your fingertips  
 

Block-wise primal-dual algorithms for large-scale doubly penalized ANOVA modeling

Penghui Fu and Zhiqiang Tan

Computational Statistics & Data Analysis, 2024, vol. 194, issue C

Abstract: For multivariate nonparametric regression, doubly penalized ANOVA modeling (DPAM) has recently been proposed, using hierarchical total variations (HTVs) and empirical norms as penalties on the component functions such as main effects and multi-way interactions in a functional ANOVA decomposition of the underlying regression function. The two penalties play complementary roles: the HTV penalty promotes sparsity in the selection of basis functions within each component function, whereas the empirical-norm penalty promotes sparsity in the selection of component functions. To facilitate large-scale training of DPAM using backfitting or block minimization, two suitable primal-dual algorithms are developed, including both batch and stochastic versions, for updating each component function in single-block optimization. Existing applications of primal-dual algorithms are intractable for DPAM with both HTV and empirical-norm penalties. The validity and advantage of the stochastic primal-dual algorithms are demonstrated through extensive numerical experiments, compared with their batch versions and a previous active-set algorithm, in large-scale scenarios.

Keywords: ANOVA modeling; Nonparametric regression; Penalized estimation; Primal-dual algorithms; Stochastic algorithms; Stochastic gradient methods; Total variation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947324000161
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:194:y:2024:i:c:s0167947324000161

DOI: 10.1016/j.csda.2024.107932

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:194:y:2024:i:c:s0167947324000161