Sequential estimation for mixture of regression models for heterogeneous population
Na You,
Hongsheng Dai,
Xueqin Wang and
Qingyun Yu
Computational Statistics & Data Analysis, 2024, vol. 194, issue C
Abstract:
Heterogeneity among patients commonly exists in clinical studies and leads to challenges in medical research. It is widely accepted that there exist various sub-types in the population and they are distinct from each other. The approach of identifying the sub-types and thus tailoring disease prevention and treatment is known as precision medicine. The mixture model is a classical statistical model to cluster the heterogeneous population into homogeneous sub-populations. However, for the highly heterogeneous population with multiple components, its parameter estimation and clustering results may be ambiguous due to the dependence of the EM algorithm on the initial values. For sub-typing purposes, the finite mixture of regression models with concomitant variables is considered and a novel statistical method is proposed to identify the main components with large proportions in the mixture sequentially. Compared to existing typical statistical inferences, the new method not only requires no pre-specification on the number of components for model fitting, but also provides more reliable parameter estimation and clustering results. Simulation studies demonstrated the superiority of the proposed method. Real data analysis on the drug response prediction illustrated its reliability in the parameter estimation and capability to identify the important subgroup.
Keywords: EM algorithm; Heterogeneous population; Mixture model; Sub-type (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947324000264
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:194:y:2024:i:c:s0167947324000264
DOI: 10.1016/j.csda.2024.107942
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().