EconPapers    
Economics at your fingertips  
 

Multi-task learning regression via convex clustering

Akira Okazaki and Shuichi Kawano

Computational Statistics & Data Analysis, 2024, vol. 195, issue C

Abstract: Multi-task learning (MTL) is a methodology that aims to improve the general performance of estimation and prediction by sharing common information among related tasks. In the MTL, there are several assumptions for the relationships and methods to incorporate them. One of the natural assumptions in the practical situation is that tasks are classified into some clusters with their characteristics. For this assumption, the group fused regularization approach performs clustering of the tasks by shrinking the difference among tasks. This enables the transfer of common information within the same cluster. However, this approach also transfers the information between different clusters, which worsens the estimation and prediction. To overcome this problem, an MTL method is proposed with a centroid parameter representing a cluster center of the task. Because this model separates parameters into the parameters for regression and the parameters for clustering, estimation and prediction accuracy for regression coefficient vectors are improved. The effectiveness of the proposed method is shown through Monte Carlo simulations and applications to real data.

Keywords: Block-wise coordinate descent; Convex clustering; Logistic regression; Multi-task learning; Network lasso; Regularization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947324000409
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:195:y:2024:i:c:s0167947324000409

DOI: 10.1016/j.csda.2024.107956

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:195:y:2024:i:c:s0167947324000409