EconPapers    
Economics at your fingertips  
 

Variable selection in Bayesian multiple instance regression using shotgun stochastic search

Seongoh Park, Joungyoun Kim, Xinlei Wang and Johan Lim

Computational Statistics & Data Analysis, 2024, vol. 196, issue C

Abstract: In multiple instance learning (MIL), a bag represents a sample that has a set of instances, each of which is described by a vector of explanatory variables, but the entire bag only has one label/response. Though many methods for MIL have been developed to date, few have paid attention to interpretability of models and results. The proposed Bayesian regression model stands on two levels of hierarchy, which transparently show how explanatory variables explain and instances contribute to bag responses. Moreover, two selection problems are simultaneously addressed; the instance selection to find out the instances in each bag responsible for the bag response, and the variable selection to search for the important covariates. To explore a joint discrete space of indicator variables created for selection of both explanatory variables and instances, the shotgun stochastic search algorithm is modified to fit in the MIL context. Also, the proposed model offers a natural and rigorous way to quantify uncertainty in coefficient estimation and outcome prediction, which many modern MIL applications call for. The simulation study shows the proposed regression model can select variables and instances with high performance (AUC greater than 0.86), thus predicting responses well. The proposed method is applied to the musk data for prediction of binding strengths (labels) between molecules (bags) with different conformations (instances) and target receptors. It outperforms all existing methods, and can identify variables relevant in modeling responses.

Keywords: Multiple instance learning; Model selection; Hierarchical model; MCMC; Musk data; Binding affinity prediction (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947324000380
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:196:y:2024:i:c:s0167947324000380

DOI: 10.1016/j.csda.2024.107954

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:196:y:2024:i:c:s0167947324000380