Empirical Bayes Poisson matrix completion
Xiao Li,
Takeru Matsuda and
Fumiyasu Komaki
Computational Statistics & Data Analysis, 2024, vol. 197, issue C
Abstract:
An empirical Bayes method for the Poisson matrix denoising and completion problems is proposed, and a corresponding algorithm called EBPM (Empirical Bayes Poisson Matrix) is developed. This approach is motivated by the non-central singular value shrinkage prior, which was used for the estimation of the mean matrix parameter of a matrix-variate normal distribution. Numerical experiments show that the EBPM algorithm outperforms the common nuclear norm penalized method in both matrix denoising and completion. The EBPM algorithm is highly efficient and does not require heuristic parameter tuning, as opposed to the nuclear norm penalized method, in which the regularization parameter should be selected. The EBPM algorithm also performs better than others in real-data applications.
Keywords: Empirical Bayes; Moment estimator; Matrix denoising; Matrix completion; Singular value shrinkage (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947324000604
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:197:y:2024:i:c:s0167947324000604
DOI: 10.1016/j.csda.2024.107976
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().