Latent event history models for quasi-reaction systems
Matteo Framba,
Veronica Vinciotti and
Ernst C. Wit
Computational Statistics & Data Analysis, 2024, vol. 198, issue C
Abstract:
Various processes, such as cell differentiation and disease spreading, can be modelled as quasi-reaction systems of particles using stochastic differential equations. The existing Local Linear Approximation (LLA) method infers the parameters driving these systems from measurements of particle abundances over time. While dense observations of the process in time should in theory improve parameter estimation, LLA fails in these situations due to numerical instability. Defining a latent event history model of the underlying quasi-reaction system resolves this problem. A computationally efficient Expectation-Maximization algorithm is proposed for parameter estimation, incorporating an extended Kalman filter for evaluating the latent reactions. A simulation study demonstrates the method's performance and highlights the settings where it is particularly advantageous compared to the existing LLA approaches. An illustration of the method applied to the diffusion of COVID-19 in Italy is presented.
Keywords: SDEs; Local linear approximation; Kalman filter; EM algorithm (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794732400080X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:198:y:2024:i:c:s016794732400080x
DOI: 10.1016/j.csda.2024.107996
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().