EconPapers    
Economics at your fingertips  
 

Conditional mean dimension reduction for tensor time series

Chung Eun Lee and Xin Zhang

Computational Statistics & Data Analysis, 2024, vol. 199, issue C

Abstract: The dimension reduction problem for a stationary tensor time series is addressed. The goal is to remove linear combinations of the tensor time series that are mean independent of the past, without imposing any parametric models or distributional assumptions. To achieve this goal, a new metric called cumulative tensor martingale difference divergence is introduced and its theoretical properties are studied. Unlike existing methods, the proposed approach achieves dimension reduction by estimating a distinctive subspace that can fully retain the conditional mean information. By focusing on the conditional mean, the proposed dimension reduction method is potentially more accurate in prediction. The method can be viewed as a factor model-based approach that extends the existing techniques for estimating central subspace or central mean subspace in vector time series. The effectiveness of the proposed method is illustrated by extensive simulations and two real-world data applications.

Keywords: Dimension reduction; Factor model; Martingale difference divergence; Nonlinearity; Tensor decomposition; Tensor time series (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947324000823
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:199:y:2024:i:c:s0167947324000823

DOI: 10.1016/j.csda.2024.107998

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:199:y:2024:i:c:s0167947324000823