EconPapers    
Economics at your fingertips  
 

A Bayesian cluster validity index

Onthada Preedasawakul and Nathakhun Wiroonsri

Computational Statistics & Data Analysis, 2025, vol. 202, issue C

Abstract: Selecting the appropriate number of clusters is a critical step in applying clustering algorithms. To assist in this process, various cluster validity indices (CVIs) have been developed. These indices are designed to identify the optimal number of clusters within a dataset. However, users may not always seek the absolute optimal number of clusters but rather a secondary option that better aligns with their specific applications. This realization has led us to introduce a Bayesian cluster validity index (BCVI), which builds upon existing indices. The BCVI utilizes either Dirichlet or generalized Dirichlet priors, resulting in the same posterior distribution. The proposed BCVI is evaluated using the Calinski-Harabasz, CVNN, Davies–Bouldin, silhouette, Starczewski, and Wiroonsri indices for hard clustering and the KWON2, Wiroonsri–Preedasawakul, and Xie–Beni indices for soft clustering as underlying indices. The performance of the proposed BCVI with that of the original underlying indices has been compared. The BCVI offers clear advantages in situations where user expertise is valuable, allowing users to specify their desired range for the final number of clusters. To illustrate this, experiments classified into three different scenarios are conducted. Additionally, the practical applicability of the proposed approach through real-world datasets, such as MRI brain tumor images are presented. These tools are published as a recent R package ‘BayesCVI’.

Keywords: Cluster analysis; CVI; Dirichlet; Fuzzy c-means; K-means; MRI (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947324001373
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:202:y:2025:i:c:s0167947324001373

DOI: 10.1016/j.csda.2024.108053

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-12
Handle: RePEc:eee:csdana:v:202:y:2025:i:c:s0167947324001373