EconPapers    
Economics at your fingertips  
 

Vine copula based structural equation models

Claudia Czado

Computational Statistics & Data Analysis, 2025, vol. 203, issue C

Abstract: Gaussian linear structural equation models (SEMs) are often used as a statistical model associated with a directed acyclic graph (DAG) also known as a Bayesian network. However, such a model might not be able to represent the non-Gaussian dependence present in some data sets resulting in nonlinear, non-additive and non Gaussian conditional distributions. Therefore the use of the class of D-vine copula based regression models for the specification of the conditional distribution of a node given its parents is proposed. This class extends the class of standard linear regression models considerably. The approach also allows to create an importance order of the parents of each node and gives the potential to remove edges from the starting DAG not supported by the data. Further uncertainty of conditional estimates can be assessed and fast generative simulation using the D-vine copula based SEM is available. The improvement over a Gaussian linear SEM is shown using random specifications of the D-vine based SEM as well as its ability to correctly remove edges not present in the data generation using simulation. An engineering application showcases the usefulness of the proposals.

Keywords: Structural equation models; Bayesian networks; Vine copulas; D-vine regression (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947324001609
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:203:y:2025:i:c:s0167947324001609

DOI: 10.1016/j.csda.2024.108076

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:203:y:2025:i:c:s0167947324001609