Statistical modeling of Dengue transmission dynamics with environmental factors
Lengyang Wang and
Mingke Zhang
Computational Statistics & Data Analysis, 2025, vol. 203, issue C
Abstract:
Dengue fever is one of the most common mosquito-borne infectious diseases in tropical regions. Understanding the dynamics of dengue transmission can help provide timely early warnings, thereby reducing mortality. However, previous studies have failed to simulate faithfully dengue dynamics and answer questions pertinent to outbreaks. By incorporating environmental factors into a time-series-susceptible-infectious-recovered (TSIR) model, a new substantive model, to analyze their impact on transmission, is proposed. The newly proposed environmental-time-series-susceptible-infectious-recovered (ETSIR) model can highlight statistically their significance on dengue transmission, thus providing deeper insight into the transmission and addressing several epidemiological puzzles.
Keywords: Multiple-step-ahead estimation; Environmental factors; SIR model; Infectious diseases; Transmission dynamics (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947324001646
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:203:y:2025:i:c:s0167947324001646
DOI: 10.1016/j.csda.2024.108080
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().