High-dimensional copula-based Wasserstein dependence
Steven De Keyser and
Irène Gijbels
Computational Statistics & Data Analysis, 2025, vol. 204, issue C
Abstract:
The aim is to generalize 2-Wasserstein dependence coefficients to measure dependence between a finite number of random vectors. This generalization includes theoretical properties, and in particular focuses on an interpretation of maximal dependence and an asymptotic normality result for a proposed semi-parametric estimator under a Gaussian copula assumption. In addition, it is of interest to look at general axioms for dependence measures between multiple random vectors, at plausible normalizations, and at various examples. Afterwards, it is important to study plug-in estimators based on penalized empirical covariance matrices in order to deal with high dimensionality issues and taking possible marginal independencies into account by inducing (block) sparsity. The latter ideas are investigated via a simulation study, considering other dependence coefficients as well. The use of the developed methods is illustrated in two real data applications.
Keywords: Copula; Normal scores rank correlation; Regularization; Sparsity; Wasserstein dependence (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947324001804
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:204:y:2025:i:c:s0167947324001804
DOI: 10.1016/j.csda.2024.108096
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().