Robust generalized canonical correlation analysis based on scatter matrices
Nadia L. Kudraszow,
Alejandra V. Vahnovan,
Julieta Ferrario and
M. Victoria Fasano
Computational Statistics & Data Analysis, 2025, vol. 206, issue C
Abstract:
Generalized Canonical Correlation Analysis (GCCA) is a powerful tool for analyzing and understanding linear relationships between multiple sets of variables. However, its classical estimations are highly sensitive to outliers, which can significantly affect the results of the analysis. A functional version of GCCA is proposed, based on scatter matrices, leading to robust and Fisher consistent estimators for appropriate choices of the scatter matrix. In cases where scatter matrices are ill-conditioned, a modification based on an estimation of the precision matrix is introduced. A procedure to identify influential observations is also developed. A simulation study evaluates the finite-sample performance of the proposed methods under clean and contaminated samples. The advantages of the influential data detection approach are demonstrated through an application to a real dataset.
Keywords: Robustness; Dimension reduction; Atypical data detection; Scatter matrices (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947325000027
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:206:y:2025:i:c:s0167947325000027
DOI: 10.1016/j.csda.2025.108126
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().