Fully nonparametric inverse probability weighting estimation with nonignorable missing data and its extension to missing quantile regression
Lingnan Tai,
Li Tao,
Jianxin Pan,
Man-lai Tang,
Keming Yu,
Wolfgang Karl Härdle and
Maozai Tian
Computational Statistics & Data Analysis, 2025, vol. 206, issue C
Abstract:
In practical data analysis, the not-missing-at-random (NMAR) mechanism is typically more aligned with the natural causes of missing data. The NMAR mechanism is complicated and adaptable, surpassing the capabilities of classical methods in addressing this missing data challenge. A comprehensive analysis framework for the NMAR problem is established, and a novel inverse probability weighting method based on the fully nonparametric exponential tilting model and sieve minimum distance is constructed. Additionally, given the broad field of applications for the quantile regression model, fully nonparametric inverse probability weighting and augmented inverse probability weighting for estimating quantile regression under NMAR are introduced. Simulation studies demonstrate that the proposed methods are better suited for various flexible propensity score functions. In practical applications, our methods are applied to the AIDS Clinical Trials Group Study 175 data to examine the effectiveness of treatments on HIV-infected subjects.
Keywords: Nonparametric propensity score; Inverse probability weighting; Sieve minimum distance; Quantile regression; Not missing at random (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947325000039
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:206:y:2025:i:c:s0167947325000039
DOI: 10.1016/j.csda.2025.108127
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().