EconPapers    
Economics at your fingertips  
 

Extremal local linear quantile regression for nonlinear dependent processes

Fengyang He and Huixia Judy Wang

Computational Statistics & Data Analysis, 2025, vol. 206, issue C

Abstract: Estimating extreme conditional quantiles accurately in the presence of data sparsity in the tails is a challenging and important problem. While there is existing literature on quantile analysis, limited work has been done on capturing nonlinear relationships in dependent data structures for extreme quantile estimation. They propose a novel estimation procedure that combines the local linear quantile regression method and extreme value theory. They develop a new enhanced Hill estimator for the conditional extreme value index, constructed based on the local linear quantile estimators at a sequence of quantile levels. That approach allows for data-adaptive weights assigned to different quantiles, providing flexibility and potential for enhancing estimation efficiency. Furthermore, they propose an estimator for extreme conditional quantiles by extrapolating from the intermediate quantiles. Their methodology enables both point and interval estimation of extreme conditional quantiles for processes with an α-mixing dependence structure. They derive the Bahadur representation of the intermediate quantile estimators within the local linear extreme-quantile framework and establish the asymptotic properties of their proposed estimators. Simulation studies and real data analysis are conducted to demonstrate the effectiveness and performance of their methods.

Keywords: Bahadur representation; Dependent processes; Extreme conditional quantiles; Heavy-tailed time series; Local linear quantile regression (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947325000040
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:206:y:2025:i:c:s0167947325000040

DOI: 10.1016/j.csda.2025.108128

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-24
Handle: RePEc:eee:csdana:v:206:y:2025:i:c:s0167947325000040