Heterogeneity-aware transfer learning for high-dimensional linear regression models
Yanjin Peng and
Lei Wang
Computational Statistics & Data Analysis, 2025, vol. 206, issue C
Abstract:
Transfer learning can refine the performance of a target model through utilizing beneficial information from relevant source datasets. In practice, however, auxiliary samples may be collected from different sub-populations with non-negligible heterogeneity. In this paper we assume that each dataset involves a common parameter vector and dataset-specific nuisance parameters and extend the transfer learning framework to account for heterogeneous models. Specifically, we adapt the decorrelated score technique to deal with the dataset-specific nuisance parameters and develop a strategy to leverage possible shared information from relevant source datasets. To avoid negative transfer, a completely data-driven algorithm is provided to determine the transferable sources. The convergence rate of the proposed estimator is investigated and the source detection consistency is also verified. Extensive numerical experiments are conducted to evaluate the proposed transfer learning algorithms, and an application to the Genotype-Tissue Expression dataset is exhibited.
Keywords: Heterogeneous models; Decorrelated score; Dataset-specific nuisance parameters; Transferable-set detection (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947325000052
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:206:y:2025:i:c:s0167947325000052
DOI: 10.1016/j.csda.2025.108129
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().