EconPapers    
Economics at your fingertips  
 

A deflation-adjusted Bayesian information criterion for selecting the number of clusters in K-means clustering

Masao Ueki

Computational Statistics & Data Analysis, 2025, vol. 209, issue C

Abstract: A deflation-adjusted Bayesian information criterion is proposed by introducing a closed-form adjustment to the variance estimate after K-means clustering. An expected lower bound of the deflation in the variance estimate after K-means clustering is derived and used as an adjustment factor for the variance estimates. The deflation-adjusted variance estimates are applied to the Bayesian information criterion under the Gaussian model for selecting the number of clusters. The closed-form expression makes the proposed deflation-adjusted Bayesian information criterion computationally efficient. Simulation studies show that the deflation-adjusted Bayesian information criterion performs better than other existing clustering methods in some situations, including K-means clustering with the number of clusters selected by standard Bayesian information criteria, the gap statistic, the average silhouette score, the prediction strength, and clustering using a Gaussian mixture model with the Bayesian information criterion. The proposed method is illustrated through a real data application for clustering human genomic data from the 1000 Genomes Project.

Keywords: Bayesian information criterion; Deflation-adjustment to variance estimate; K-means clustering (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947325000465
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:209:y:2025:i:c:s0167947325000465

DOI: 10.1016/j.csda.2025.108170

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-06
Handle: RePEc:eee:csdana:v:209:y:2025:i:c:s0167947325000465