EconPapers    
Economics at your fingertips  
 

JANE: Just Another latent space NEtwork clustering algorithm

Alan T. Arakkal and Daniel K. Sewell

Computational Statistics & Data Analysis, 2025, vol. 211, issue C

Abstract: While latent space network models have been a popular approach for community detection for over 15 years, major computational challenges remain, limiting the ability to scale beyond small networks. The R statistical software package, JANE, introduces a new estimation algorithm with massive speedups derived from: (1) a low dimensional approximation approach to adjust for degree heterogeneity parameters; (2) an approximation of intractable likelihood terms; (3) a fast initialization algorithm; and (4) a novel set of convergence criteria focused on clustering performance. Additionally, the proposed method addresses limitations of current implementations, which rely on a restrictive spherical-shape assumption for the prior distribution on the latent positions; relaxing this constraint allows for greater flexibility across diverse network structures. A simulation study evaluating clustering performance of the proposed approach against state-of-the-art methods shows dramatically improved clustering performance in most scenarios and significant reductions in computational time — up to 45 times faster compared to existing approaches.

Keywords: Clustering; Community detection; Network analysis; Latent space cluster model; EM algorithm (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947325001045
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:211:y:2025:i:c:s0167947325001045

DOI: 10.1016/j.csda.2025.108228

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-07-01
Handle: RePEc:eee:csdana:v:211:y:2025:i:c:s0167947325001045