Kernel density estimation for compositional data with zeros via hypersphere mapping
Changwon Yoon,
Hyunbin Choi and
Jeongyoun Ahn
Computational Statistics & Data Analysis, 2025, vol. 212, issue C
Abstract:
Compositional data—measurements of relative proportions among components—arise frequently in fields ranging from chemometrics to bioinformatics. While density estimation of such data provides crucial insights into their underlying patterns and enables comparative analyses across groups, existing nonparametric approaches are limited, particularly in handling zero components that commonly occur in real-world datasets. We propose a novel kernel density estimation (KDE) method for compositional data that naturally accommodates zero components by exploiting the geometric correspondence between simplices and hyperspheres. This connection to spherical KDE allows us to establish theoretical guarantees, including consistency of the estimator. Through extensive simulations and real data analyses, we demonstrate our method's advantages over existing approaches, particularly in scenarios involving zero components.
Keywords: Compositional data; Spherical KDE; Von-Mises kernel; Zero components (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947325001252
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:212:y:2025:i:c:s0167947325001252
DOI: 10.1016/j.csda.2025.108249
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().