Semisupervised learning from dissimilarity data
Michael W. Trosset,
Carey E. Priebe,
Youngser Park and
Michael I. Miller
Computational Statistics & Data Analysis, 2008, vol. 52, issue 10, 4643-4657
Abstract:
The following two-stage approach to learning from dissimilarity data is described: (1) embed both labeled and unlabeled objects in a Euclidean space; then (2) train a classifier on the labeled objects. The use of linear discriminant analysis for (2), which naturally invites the use of classical multidimensional scaling for (1), is emphasized. The choice of the dimension of the Euclidean space in (1) is a model selection problem; too few or too many dimensions can degrade classifier performance. The question of how the inclusion of unlabeled objects in (1) affects classifier performance is investigated. In the case of spherical covariances, including unlabeled objects in (1) is demonstrably superior. Several examples are presented.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00153-9
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:10:p:4643-4657
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().