EconPapers    
Economics at your fingertips  
 

Semisupervised learning from dissimilarity data

Michael W. Trosset, Carey E. Priebe, Youngser Park and Michael I. Miller

Computational Statistics & Data Analysis, 2008, vol. 52, issue 10, 4643-4657

Abstract: The following two-stage approach to learning from dissimilarity data is described: (1) embed both labeled and unlabeled objects in a Euclidean space; then (2) train a classifier on the labeled objects. The use of linear discriminant analysis for (2), which naturally invites the use of classical multidimensional scaling for (1), is emphasized. The choice of the dimension of the Euclidean space in (1) is a model selection problem; too few or too many dimensions can degrade classifier performance. The question of how the inclusion of unlabeled objects in (1) affects classifier performance is investigated. In the case of spherical covariances, including unlabeled objects in (1) is demonstrably superior. Several examples are presented.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00153-9
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:52:y:2008:i:10:p:4643-4657

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:52:y:2008:i:10:p:4643-4657